Database Tun«ih/g
for Better Performa

by%
In association with:

PerformanceArt Passionate about Performance é/p



Webinar Targets

Present the challenges of managing performa cein
Multi-DB environments |

(Oracle, SQL Server, MySQL, DB2)

Focus on the common performance issues/of all DB
applications and establish a common IangUage |

Introduce a new methodology for tunmg appllcatl ns
across different databases




Multi-DB Challenges

Business processes and appllcatlons ar spanned
across different DBs

Each database will have its own set of pe ormance tools
and guidelines for best practice — and its/own teaym of
internal and external advisors | |




Multi-DB Challenges

Business Performance information is
fragmented over different databases




Performance of DB Applicatio/ns

80% of application performance problems lie in the
application

Dealing with them by DB, storage or har ware qurades

is costly, not scalable and has very poor ROI compared to
application tuning




Pareto Principle in SQL Tuning/ /

80% of application time is spent in 20% of the application c e (SQL calls)
80% of application DB time is spent in 20% of the SQL sta’/o’é ents it issues

Application time breakdown




Different Databases — Same Issues

Oracle, SQL server, MySQL and DB2 are different in many
aspects but they use B-tree indices in bas caIIy the same

way.
They all suffer in the same way from sort on dlsk heavy
joins, full scans in accessing the data and index bverhead
in updating the data




Application Time in DB Breakdown/—/

Typical Appearance /

/

14




/]
Resource Pie — Optimal Apr/ﬂ arance

| Y /

L




Common Performance Issues

Application layer

Rerunning SQL
Reparsing SQL

The solution is in the application.




Common Performance Issues/

DB Layer

Full scans

Index range
Index overhead
Sorts

Joins




New Approach

A methodology for tuning objects by sch"y ma which is
applicable to all DB types |

Enables a unified view of performance a ross al
databases




Key Metrics of Object Performance

,""‘ ,/‘

Access time
Access type (full scan, index range, sort, join etc.)
Access wait (10, CPU, Lock, DB engine) | |
Statistics (Rows#, distinct values etc.) |




Traditional Application Tuning

Currently, DB tuning and monitoring efforts use two
methodologies as a starting point for the tuning process:

Instance level - Instance stats \

SQL statement level — top statement,




What’s Wrong with That?

Poor link between schema / business eIements nd
performance information '

Poor root cause analysis

Poor visibility to actual usage of schema objects |
Missing highly beneficial tuning opportunitiés




Top SQL is Misleading

Top SOL
Actionsl Schedule SOQL Tuning Advisor ~ }\ Go )

Select &1l | Select MNone

Select Activity (26) © |saL 1n |saL rvpe
I | 58°.70 oshepvb2l1dgsbh SELECT

1 1L.52 SsdSbhgzZ2magtdd] SELECT

1 1.21 2bosgybzkwily PLAASQL
EXECUTE

| .91 cxijgbmOod3ygg SELECT
| .61 gl 7xifvmE3gc SELECT
I
I

00

.61 OSxcf4=2d9psy SELECT

.30 chtg2Zp2ij21ivis INSERT

.30 OSxcfaz2d9psvim SELECT
| .30 dyEzhvl13yfldas SELECT
| .30 SivwagfSuprrvy SELECT
Actionsl Schedule SOL Tuning Advisor ~ }(m

0000000 O

Total Sample Count: 330
|

|




Real Application Bottlenecks

Many statements use the same access patterns on the
same objects but won’t show up in thef” op SQL.

Their aggregated impact is missed, tog’ ther with their
tuning opportunities. |




Nkl

1 top sStatements per object
v
>

tput | B Explain | B Autotrace |@DBMS output | @GN owa Output

e |8 saL_p @ crul@ war |8 o8 ToraL |B so_text
gya?3as76zut0 235 3 577 815 SELECT COUNT(*) FROM PAYMNT PAYMENTS WHERE TRUNC(PAYMENT_TIMESTAMP) = TRUNC(B1) 27
g9rh4b2h9x1nj 251 2 562 815 SELECT COUNT(*) FROM PAYMMNT PAYMENTS WHERE TRUNC(PAYMENT_TIMESTAMP) = TRUNC(:b1)
9a1zvvg3kgama 251 3 559 813 SELECT COUNT(*) FROM PAYMMNT PAYMENTS YWHERE TRUNC(PAYMENT_TIMESTAMP) = TRUNC(:b1)
Bvhuydxcabg9u 242 2 569 813 SELECT COUNT(*) FROM PAYMMNT PAYMENTS YWHERE TRUNC(PAYMENT_TIMESTAMP) = TRUNC(:b1)
amjnjpgr2zypk 243 3 564 810 SELECT COUNT(*) FROM PAYMMNT PAYMENTS YWHERE TRUNC(PAYMENT_TIMESTAMP) = TRUNC(:b1)
Bhy0c8y1d45yS 1 u] 643 644 SELECT PAYMENT_CODE FROM PAYMENTS YWHERE PHONE = TRIM(:B2 ) AND PHOMNE_PRE = TRIM(:B1 )
1s4666kcuzhdb 127 u] u] 127 SELECT COUNT(*) FROM PAYMMNT PAYMENTS YWHERE TRUNC(PAYMENT_TIMESTAMP) = TRUNC(:b1)
cSfzf1whpfird 10 1 87 958 SELECT ROWID PAYMENT_CODE PAYMENT_TIMESTAMP PAYMENT_BY ,CUST PAYMENT_TYPE ,FORM_N
86cr03923p46x u] u] 64 64 SELECT PAYMENT_CODE,S.CUST PAYMENT_TYPE, GET_CUST_NAME(S.CUST) CUST_MNAME, REPLACE(
5zs50mjhaSn74 u] u] 27 27 SELECT PAYMENT_CODE FROM PAYMENTS YWHERE ID_NUMBER = TRIM(:B1 ) AND PAYMENT_TIMESTAN
Tw 7S fpu?ntcps 3 u] 13 16 SELECT PAYMENT_CODE FROM PAYMENTS YWHERE PAYMENT_CODE NOT IN (SELECT PAYMENT _CODE
bwops49vt024h 1 u] 15 16 SELECT ROWID PAYMENT_CODE PAYMENT_TIMESTAMP PAYMENT_BY ,CUST PAYMENT_TYPE ,FORM_N
7hsvB7mcEfzj0 1 u] 10 11 SELECT COUNT(*) FROM PAYMNT PAYMENTS YWHERE PAYMENT_TIMESTAMP BETWEEN TO_DATE(:b1
bgSx29vhbn9cs 11 u] u] 11 SELECT SUM(CALLS_ANSWERED) FROM CTI.CTI_ICDNSTAT WHERE CDN= B2 AND TRUNC(TIMESTAMP)
Snnzzl1jn5fd41s 0 = 0 5 DECLARE job BINARY _INTEGER = :job; next_date DATE = :mydate; broken BOOLEAN := FALSE, BEGIN ¢
SEmmbBythgfbgz 4 0 0 4 select p.cust, count(*), (select count(*) from payments p1 where TRUNC(P1 PAYMENT_TIMESTAMP) =TRL
Sszmwam7 fysal 1 u} 3 4 insert into wri$_adv_objspace_trend_data select timepoint, space_usage, space_alloc, quality from table
2n6xk782a8ray 4 u] u] 4 SELECT NWL(TRUNC(SUM(CALL_LENGTH) f60 ,2),0) FROM PAYMNT PAYMENTS WYWHERE PAYMEMNT_TI
Twwgks43writrz u] u] 2 2 SELECT U.SPACE_USED, USPACE_ALLOCATED FROM TABLE(DBMS_SPACE.OBJECT_SPACE_USAGE_
SayShd4m2Zwchdj u] u] 2 2 SELECT ROWAD PAYMENT _CODE PAYMENT_TIMESTAMP PAYMENT_BY CUST PAYMENT_TYPE FORNM_N
06dnm2r3vkboy o 0 2

2 insert into paymnt payments (pavment code payment timestamp payvment by pavment at.cust.pavmer;t v

| Line 54 Column 45 | Modified | Windows: CR/... E

& C:\Documents ... EditPlus - [C:\D... ) DU DD,



Aggregate by Application Objects

Products Table
Orders
Customers

B |ndices

Access patterns

M Index Range Scan

M Full Table Scan
" Index Overhead

M Werite to Table




Object Tuning Methodology

Anchor Point — Top Objects

Start with the central and most useql‘" ables
(scope can be instance or application)

Table total access time includes aII ’ he acc?ss time
of its indices |




Create Tuning Sets from Explain Plan and
Performance Information

A tuning set consists of SQL statements grouped by
Application identifiers
Application objects
Access types




Object Tuning Methodology

Applies for all relational DB: |
Full table scan has different names in different but means
the same |
Range scans on B-tree indices in all DBs have the same |
inefficiencies , |
Adding indices to a table will always degrade{z’/update activities

Sorts in all DBs use temporary space on disk*"when the sort
result set is too big to be handled in memory



Aggregate Full Scan Time on a Table

,""‘ ,/‘

See how much time the application is spe ding
on full scans

Look at the top SQL in this group and |d' ntn‘y

possible indices




&> 2@ O 8|83 ¢ 032335591 seconds
- top objects
celect * from |
obj.object_name ,
> Results | [ Script Output | B Explain |§Autotrace I@DBMS output | @GN ovva, Output
Results:
[} oBJECT_NAME @ crull war @ 108 ToTaL
1 PAYMENTS 1396 14 3729 5139
2 DEBIT 52 61 2140 2253
3 INBOUND_CM 104 1788 a1 1983
4 ONLINE_MESSAGE 1100 0 0 1100
5 TARGETS_DATA 379 2 706 1087
6 REPORT_CUST 5 739 0 794
7 PRODS_Q_LOG__PK_PROD 691 0 4 695
8 CTI_IAGENTPERFORMANCESTAT 233 1 187 421
9 NU_TARGETS 355 1 25 381
10 PRODS_Q_LOG 311 0 2 313
11 DEBIT_&CCOUNT 283 0 20 303
12 EMP_EVENTS 277 0 2 279
13 INBOUND_CM__SK_CUST_DATE 228 0 33 261
14 PAYMENT_SOURCE_CUST_ACC_PT 178 0 83 261
15 WORK_CLOCK__SK_ACTIVE 233 0 20 253
16 PAYM_CARD_AYTH 2 o 24 243
17 CUST_INPUT_PAY 1 0 184 185
18 OMNLINE_MESSAGE__PK_CODE 175 0 0 175
19 CTI_IDNISSTAT a9 0 73 172
20 TARGETS_DATA_ PK_TARGET_1 42 0o 118 160

| Line 52 Column 21 Insert | Modit

o CHAWINDOWS). .. @ C:\Documents ... =4 EditPlus - [C:\D... T w0 D> D... TY Findings.pptx ® 5713




= E] @ Q' <2 | B & 023328803 seconds

—-——— Top operations for object

*

select from |

obj.object _name ,
obj.owner
ash.350Q0L_TID

ash.S0L_PLAN OPERATION||' '|| ash.S0L_PLAN OPTIONS access_type,
ash.SQL_PLAN HASH VALUE Plan hash,
sum(decode (ash.session_state, 'ON CPU',1,0)) TCPU™",
sum(decode (ash.session_state, 'WAITING' ;1,0)) -
sum(decode (ash.session_ state, 'WAITING', decode(wait_class, 'User I/70',1,0), “WAIT™
S
> rResutts [ ] Script Output |‘E§Explain IEAmmrace |@DBMS Output | Ch ovva, Output
Results:
[ obuecT_name |8 owner [B sccess_tvre @ crul@ war |8 0@ ToTaL
1 PAYMENTS PAYMNT TABLE ACCESS FULL 1252 14 2958 4224
2 PAYMENTS PANMMNT TABLE ACCESS BY INDEX ROWID 5 u] 765 770
3 PAYMENTS PAYMNT INDEX FAST FULL SCAN 131 n] n] 131
4 PAYMENTS PANMMNT COLLECTION ITERATOR PICKLER FETCH 1 u] 5 6
5 PAYMENTS PANMMNT INDEX RANGE SCAN 5 u] u] 5
6 PAYMENTS PAYMNT HASH UNIQUE 1 u} u} 1
7 PAYMENTS PANMMNT HASH JOIN 1 u] u] 1

| Line 114 Column 1 Insert

o CHWINDOWSY,. .. @ C:\Documents ... EditPlus - [C:\D... T w0 DI o... Ty Findings.pptx




Nkl

1 top sStatements per object
v
>

tput | B Explain | B Autotrace |@DBMS output | @GN owa Output

e |8 saL_p @ crul@ war |8 o8 ToraL |B so_text
gya?3as76zut0 235 3 577 815 SELECT COUNT(*) FROM PAYMNT PAYMENTS WHERE TRUNC(PAYMENT_TIMESTAMP) = TRUNC(B1) 27
g9rh4b2h9x1nj 251 2 562 815 SELECT COUNT(*) FROM PAYMMNT PAYMENTS WHERE TRUNC(PAYMENT_TIMESTAMP) = TRUNC(:b1)
9a1zvvg3kgama 251 3 559 813 SELECT COUNT(*) FROM PAYMMNT PAYMENTS YWHERE TRUNC(PAYMENT_TIMESTAMP) = TRUNC(:b1)
Bvhuydxcabg9u 242 2 569 813 SELECT COUNT(*) FROM PAYMMNT PAYMENTS YWHERE TRUNC(PAYMENT_TIMESTAMP) = TRUNC(:b1)
amjnjpgr2zypk 243 3 564 810 SELECT COUNT(*) FROM PAYMMNT PAYMENTS YWHERE TRUNC(PAYMENT_TIMESTAMP) = TRUNC(:b1)
Bhy0c8y1d45yS 1 u] 643 644 SELECT PAYMENT_CODE FROM PAYMENTS YWHERE PHONE = TRIM(:B2 ) AND PHOMNE_PRE = TRIM(:B1 )
1s4666kcuzhdb 127 u] u] 127 SELECT COUNT(*) FROM PAYMMNT PAYMENTS YWHERE TRUNC(PAYMENT_TIMESTAMP) = TRUNC(:b1)
cSfzf1whpfird 10 1 87 958 SELECT ROWID PAYMENT_CODE PAYMENT_TIMESTAMP PAYMENT_BY ,CUST PAYMENT_TYPE ,FORM_N
86cr03923p46x u] u] 64 64 SELECT PAYMENT_CODE,S.CUST PAYMENT_TYPE, GET_CUST_NAME(S.CUST) CUST_MNAME, REPLACE(
5zs50mjhaSn74 u] u] 27 27 SELECT PAYMENT_CODE FROM PAYMENTS YWHERE ID_NUMBER = TRIM(:B1 ) AND PAYMENT_TIMESTAN
Tw 7S fpu?ntcps 3 u] 13 16 SELECT PAYMENT_CODE FROM PAYMENTS YWHERE PAYMENT_CODE NOT IN (SELECT PAYMENT _CODE
bwops49vt024h 1 u] 15 16 SELECT ROWID PAYMENT_CODE PAYMENT_TIMESTAMP PAYMENT_BY ,CUST PAYMENT_TYPE ,FORM_N
7hsvB7mcEfzj0 1 u] 10 11 SELECT COUNT(*) FROM PAYMNT PAYMENTS YWHERE PAYMENT_TIMESTAMP BETWEEN TO_DATE(:b1
bgSx29vhbn9cs 11 u] u] 11 SELECT SUM(CALLS_ANSWERED) FROM CTI.CTI_ICDNSTAT WHERE CDN= B2 AND TRUNC(TIMESTAMP)
Snnzzl1jn5fd41s 0 = 0 5 DECLARE job BINARY _INTEGER = :job; next_date DATE = :mydate; broken BOOLEAN := FALSE, BEGIN ¢
SEmmbBythgfbgz 4 0 0 4 select p.cust, count(*), (select count(*) from payments p1 where TRUNC(P1 PAYMENT_TIMESTAMP) =TRL
Sszmwam7 fysal 1 u} 3 4 insert into wri$_adv_objspace_trend_data select timepoint, space_usage, space_alloc, quality from table
2n6xk782a8ray 4 u] u] 4 SELECT NWL(TRUNC(SUM(CALL_LENGTH) f60 ,2),0) FROM PAYMNT PAYMENTS WYWHERE PAYMEMNT_TI
Twwgks43writrz u] u] 2 2 SELECT U.SPACE_USED, USPACE_ALLOCATED FROM TABLE(DBMS_SPACE.OBJECT_SPACE_USAGE_
SayShd4m2Zwchdj u] u] 2 2 SELECT ROWAD PAYMENT _CODE PAYMENT_TIMESTAMP PAYMENT_BY CUST PAYMENT_TYPE FORNM_N
06dnm2r3vkboy o 0 2

2 insert into paymnt payments (pavment code payment timestamp payvment by pavment at.cust.pavmer;t v

| Line 54 Column 45 | Modified | Windows: CR/... E

& C:\Documents ... EditPlus - [C:\D... ) DU DD,



REBO B8 ¢ 54995284 seconds
[ P W - Ty

SQL_PLAN OPERATION||' '|| ash.3QL_PLAN OPTIONS,
ccess_predicates,

filter_predicates

L_PLAN HASH VALUE

r by sum(decode (session_state,'ON CPU',1,1)) desc
ere rownum < 50

top predicate:

w
o
14
H
ct
B
=
m

ct ¥ from |(

ct F
h.sql_id , ]
QL_PLAN HASH VALUE Plan_hash,

its | [5] Script Output | B Explain | B Autotrace | DEMS output | € owia output

|8 FLTER PREDICATES

TRUNC(NTERNAL_FUNCTIONC'P1" "PAYMENT_TIMESTAMP"))=TRUNC(SYSDATE@.-TO_NUMBER(D))
TRUNCONTERNAL _FUNCTION("P1" "PAYMENT _TIMESTAMP"))=TRUNC(SY SDATE@!-TO_NUMBER(D))
TRUNC(NTERNAL _FUNCTION('PA* "PAYMENT_TIMESTAMP")=TRUNC(SYSDATE@.-TO_NUMBER(D))

|8 access_prepicaTes
"P1" "PAYMENT_SOURCE"=3 AND "P1""CUST"=B1
"P1" "PAYMENT_SOURCE"=1 AND "P1" "CUST"=B1

"P1" "PAYMENT _SOURCE"=2 AND "P1"."CUST"=:B1
(TO_CHAR(INTERNAL _FUNCTION("P1" "PAYMENT _TIMESTAMP") 'HH24")=:B1 AND TRUNC(NTERNAL_FUNCTION("P1" "PAYMENT _TIMESTAMP"))=TRUNC(SYSDATE@!-TO_NUMBER(.D))) "P1""PAYMENT _SOURCE"=4
TRUNC(INTERNAL _FUNCTION("P1" "PAYMENT _TIMESTAMP"))=TRUNC(SYSDATE@!-TO_NUMBER(:D))

TRUNC(INTERMAL _FUNCTION("P1" "PAYMENT _TIMESTAMP"))=TRUNC(SYSDATE@!-TO_NUMBER(:D))

"P1" "PAYMENT _SOURCE"=4 AND "P1"."CUST"=:B1
"P1""PAYMENT_SOURCE"=5 AND "P1" "CUST"=:B1




B-tree Indices

Most applications rely heavily on B ’;ree
indices across all DBs

Indices on large and central tables can be
large and consume high amounts/of 1/0,
CPU and memory I

Avoiding full scans by using |nd|ces can |
create new performance issues, slowin
down application responsiveness




Aggregate Index Time to Table

Now you can assess:
Total time of access to a table
Index usage
Index misusage

Index overhead

Now you can optimize your index structdre




Object Issues — Bad Index Structure

Common index related problems:
Matching level / Clustering Factor

Index overhead ‘
Change to index structure can boost pe formance

Tuning gain can be calculated |




Index Only / Covering Index Access

No table blocks are read |
Clustering factor has no effect
Sort can be avoided




Index Overhead §




Index Overhead Solution

Detect unused indices
Detect subset indices

Detect unused columns that
inflate index size




geXx Overneac Rea3
B> = [ ><] 0.3852579 seconds
-——— index overhead pexr table
R
-
B> Resutts ] Script Output | B Explain | 8 Autotrace | (A DBMS output | €% owa output
Results:
OBJECT_NAME |@ access_tvre|@ crul@ war @ 0|8 ToTal |
1 PAYM_CARD_AYTH Insert Overhead 3 0o 388 371
2 PAYM_ACCOUNT Insert Overhead 1 0o 214 215
3 PAYMENT_CUST_ACC_PT Insert Overhead 1 0 186 187
4 PAYMNT_ACCOUNT_TS Insert Overhead 2 0 170 172
S PAYMENTS_ID_PT Insert Overhead 1 0 146 147
6 PAYMNT___PAY_CUST_FORM Insert Overhead 1 0 103 104
7 PAYMENTS__SK_CARD_NUMBER Insert Overhead 1 0o &6 67
8 PAYMENTS__SK_ID Insert Overhead 2 0 52 54
9 PAYMENTS__SK_PHONE insert Overhead 2 0o 51 53
10 PAYMENTS_IDX$$_05F AD000 Insert Overhead 0 0o s2 52
11 PAYMENTS__SK_CREDIT_AYTH  Insert Overhead 1 o 38 39
12 PAYMENTS__SK_NAME Insert Overhead 0 0 34 34
13 PAYMENTS__SK_FORM_NUMBER Insert Overhead 1 o 22 23
14 PAYMENT_SOURCE_CUST_ACC_PT Insert Overhead 0 1 21 22
15 PAYMENT_ORDER Insert Overhead 2 0 14 16 §




Schema Analysis - Local

Often more effective than SQL tuning
Solid entity for DBA. Fits well in solution space/

Helps in optimizing the match between appllc'
design and usage

Exposes hidden performance bottlenecks
Reveals usage of schema objects
Enables effective usage of DB advisors




Schema Analysis - Global

Enables continuous and full visibility of D
impact on business performance

management

Increases company’s scalability and |tsﬂeX|b|I|ty""

answering business needs




Passionate about Performance



